Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic analysis of Intercept-treated platelets.

Identifieur interne : 000829 ( Main/Exploration ); précédent : 000828; suivant : 000830

Proteomic analysis of Intercept-treated platelets.

Auteurs : Michel Prudent [Suisse] ; David Crettaz ; Julien Delobel ; Jean-Daniel Tissot ; Niels Lion

Source :

RBID : pubmed:22813878

Descripteurs français

English descriptors

Abstract

In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.

DOI: 10.1016/j.jprot.2012.07.008
PubMed: 22813878


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic analysis of Intercept-treated platelets.</title>
<author>
<name sortKey="Prudent, Michel" sort="Prudent, Michel" uniqKey="Prudent M" first="Michel" last="Prudent">Michel Prudent</name>
<affiliation wicri:level="3">
<nlm:affiliation>Service Régional Vaudois de Transfusion Sanguine, Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Service Régional Vaudois de Transfusion Sanguine, Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crettaz, David" sort="Crettaz, David" uniqKey="Crettaz D" first="David" last="Crettaz">David Crettaz</name>
</author>
<author>
<name sortKey="Delobel, Julien" sort="Delobel, Julien" uniqKey="Delobel J" first="Julien" last="Delobel">Julien Delobel</name>
</author>
<author>
<name sortKey="Tissot, Jean Daniel" sort="Tissot, Jean Daniel" uniqKey="Tissot J" first="Jean-Daniel" last="Tissot">Jean-Daniel Tissot</name>
</author>
<author>
<name sortKey="Lion, Niels" sort="Lion, Niels" uniqKey="Lion N" first="Niels" last="Lion">Niels Lion</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22813878</idno>
<idno type="pmid">22813878</idno>
<idno type="doi">10.1016/j.jprot.2012.07.008</idno>
<idno type="wicri:Area/Main/Corpus">000821</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000821</idno>
<idno type="wicri:Area/Main/Curation">000821</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000821</idno>
<idno type="wicri:Area/Main/Exploration">000821</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteomic analysis of Intercept-treated platelets.</title>
<author>
<name sortKey="Prudent, Michel" sort="Prudent, Michel" uniqKey="Prudent M" first="Michel" last="Prudent">Michel Prudent</name>
<affiliation wicri:level="3">
<nlm:affiliation>Service Régional Vaudois de Transfusion Sanguine, Lausanne, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Service Régional Vaudois de Transfusion Sanguine, Lausanne</wicri:regionArea>
<placeName>
<settlement type="city">Lausanne</settlement>
<region nuts="3" type="region">Canton de Vaud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crettaz, David" sort="Crettaz, David" uniqKey="Crettaz D" first="David" last="Crettaz">David Crettaz</name>
</author>
<author>
<name sortKey="Delobel, Julien" sort="Delobel, Julien" uniqKey="Delobel J" first="Julien" last="Delobel">Julien Delobel</name>
</author>
<author>
<name sortKey="Tissot, Jean Daniel" sort="Tissot, Jean Daniel" uniqKey="Tissot J" first="Jean-Daniel" last="Tissot">Jean-Daniel Tissot</name>
</author>
<author>
<name sortKey="Lion, Niels" sort="Lion, Niels" uniqKey="Lion N" first="Niels" last="Lion">Niels Lion</name>
</author>
</analytic>
<series>
<title level="j">Journal of proteomics</title>
<idno type="eISSN">1876-7737</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blood Buffy Coat (cytology)</term>
<term>Blood Buffy Coat (metabolism)</term>
<term>Blood Buffy Coat (microbiology)</term>
<term>Blood Platelets (cytology)</term>
<term>Blood Platelets (metabolism)</term>
<term>Blood Platelets (microbiology)</term>
<term>Blood Proteins (metabolism)</term>
<term>Female (MeSH)</term>
<term>Furocoumarins (pharmacology)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Microbial Viability (drug effects)</term>
<term>Photosensitizing Agents (pharmacology)</term>
<term>Proteome (metabolism)</term>
<term>Proteomics (MeSH)</term>
<term>Sterilization (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Buffy coat (cytologie)</term>
<term>Buffy coat (microbiologie)</term>
<term>Buffy coat (métabolisme)</term>
<term>Femelle (MeSH)</term>
<term>Furocoumarines (pharmacologie)</term>
<term>Humains (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Photosensibilisants (pharmacologie)</term>
<term>Plaquettes (cytologie)</term>
<term>Plaquettes (microbiologie)</term>
<term>Plaquettes (métabolisme)</term>
<term>Protéines du sang (métabolisme)</term>
<term>Protéome (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Stérilisation (méthodes)</term>
<term>Viabilité microbienne (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Blood Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Buffy coat</term>
<term>Plaquettes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Blood Buffy Coat</term>
<term>Blood Platelets</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Microbial Viability</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Viabilité microbienne</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Blood Buffy Coat</term>
<term>Blood Platelets</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sterilization</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Buffy coat</term>
<term>Plaquettes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Blood Buffy Coat</term>
<term>Blood Platelets</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Buffy coat</term>
<term>Plaquettes</term>
<term>Protéines du sang</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Stérilisation</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Furocoumarines</term>
<term>Photosensibilisants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Furocoumarins</term>
<term>Photosensitizing Agents</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Femelle</term>
<term>Humains</term>
<term>Mâle</term>
<term>Protéomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22813878</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1876-7737</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76 Spec No.</Volume>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Journal of proteomics</Title>
<ISOAbbreviation>J Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteomic analysis of Intercept-treated platelets.</ArticleTitle>
<Pagination>
<MedlinePgn>316-28</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jprot.2012.07.008</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1874-3919(12)00538-6</ELocationID>
<Abstract>
<AbstractText>In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prudent</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Service Régional Vaudois de Transfusion Sanguine, Lausanne, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crettaz</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Delobel</LastName>
<ForeName>Julien</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tissot</LastName>
<ForeName>Jean-Daniel</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lion</LastName>
<ForeName>Niels</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016430">Clinical Trial</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Proteomics</MedlineTA>
<NlmUniqueID>101475056</NlmUniqueID>
<ISSNLinking>1874-3919</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001798">Blood Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011564">Furocoumarins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017319">Photosensitizing Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058621" MajorTopicYN="N">Blood Buffy Coat</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001792" MajorTopicYN="N">Blood Platelets</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001798" MajorTopicYN="N">Blood Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011564" MajorTopicYN="N">Furocoumarins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017319" MajorTopicYN="N">Photosensitizing Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013242" MajorTopicYN="N">Sterilization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22813878</ArticleId>
<ArticleId IdType="pii">S1874-3919(12)00538-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.jprot.2012.07.008</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Vaud</li>
</region>
<settlement>
<li>Lausanne</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Crettaz, David" sort="Crettaz, David" uniqKey="Crettaz D" first="David" last="Crettaz">David Crettaz</name>
<name sortKey="Delobel, Julien" sort="Delobel, Julien" uniqKey="Delobel J" first="Julien" last="Delobel">Julien Delobel</name>
<name sortKey="Lion, Niels" sort="Lion, Niels" uniqKey="Lion N" first="Niels" last="Lion">Niels Lion</name>
<name sortKey="Tissot, Jean Daniel" sort="Tissot, Jean Daniel" uniqKey="Tissot J" first="Jean-Daniel" last="Tissot">Jean-Daniel Tissot</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Vaud">
<name sortKey="Prudent, Michel" sort="Prudent, Michel" uniqKey="Prudent M" first="Michel" last="Prudent">Michel Prudent</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000829 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000829 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22813878
   |texte=   Proteomic analysis of Intercept-treated platelets.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22813878" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020